Современная палеонтология. Часть I

Современная палеонтология. Часть I

, ,

Современная палеонтология

Палеонтология — это наука об ископаемых организмах. Из-за специфики и разнообразия изучаемых объектов палеонтология использует множество различных методов. На начальном этапе развития исследования в палеонтологии в основном были направлены на выяснение и описание разнообразия органического мира прошлого, создание систематик и выяснение филогенетических взаимоотношений ископаемых групп. Позднее чётко обозначились вполне самостоятельные направления: 1) таксономическое (разнообразие, систематика, региональные фауны и флоры); 2) морфофункциональное и эволюционно-морфологическое; 3) филогенетическое; 4) палеоэкологическое; 5) микроструктурно-гистологическое; 6) палеобиогеохимическое; 7) палеобиогеографическое; 8) биостратиграфическое и др. Наконец, в самое последнее время обособились палеонтология докембрия, молекулярная палеонтология, бактериальная палеонтология, биосферное направление и изучение необычных (экстраординарных) биот. Такая дифференциация палеонтологических исследований определяется по крайней мере двумя причинами. Во-первых, задачи палеонтологии значительно обогащаются её кооперацией с другими областями биологических и геологических наук, а во-вторых, расширяются с развитием методической базы (внедрением электронной микроскопии, томографии, микроанализаторов, компьютерной техники).

Обособление новых направлений не означает, однако, что результаты традиционных исследований утрачивают своё значение. Традиционные описания новых таксонов и региональных фаун и флор всегда были и будут оставаться фундаментом палеонтологии, поскольку без пополнения именно этих данных все остальные исследования могут быстро потерять смысл, лишившись основы. Остановимся на самых ярких достижениях последних лет, как в традиционных, так и в новых направлениях.

Палеонтология докембрия

Сам термин был введён сравнительно недавно (в конце 60-х годов) Б.С. Соколовым. Это направление связано с изучением органического мира на интервале, равном примерно 7/8 длительности истории Земли. Развивается оно в настоящее время очень бурно. Ещё не так давно считалось, что в докембрии практически не было жизни, по крайней мере макроскопически различимой. Поэтому-то весь докембрий и носит название криптозой (эра скрытой жизни). Огромное количество новых находок от макроскопических до молекулярных дало возможность создать более или менее достоверную общую картину эволюции органического мира и биосферы докембрия [10]. Ещё несколько лет тому назад считалось, что первые многоклеточные организмы появились лишь в венде (~650–550 млн лет), а одноклеточные эукариоты — приблизительно 1,2–1,33 млрд лет тому назад. Теперь мы уже знаем о находках низших грибов в породах, возраст которых составляет около 2,2 млрд лет, и первых многоклеточных животных и их следов в породах, чей возраст оценивается 1,4 млрд лет. Совершенно уникальные результаты получены в результате анализа разнообразия и пространственного распространения так называемой вендо-эдиакарской фауны. Её специфика состоит в том, что все представители этой биоты ещё не имеют скелета. Сегодня уже описаны многие десятки родов и видов, и обнаружены они на всех континентах [2].

Бактериальная палеонтология

Это направление сформировалось в последние годы, хотя изучение ископаемых бактерий в кремнях началось почти 50 лет тому назад. Считалось, что кремни — единственная порода, где в принципе можно обнаружить сохранившиеся бактериальные остатки. Однако развитие палеонтологии докембрия и электронномикроскопическое изучение высокоуглеродистых пород и фосфоритов выявили наличие фоссилизированных бактерий практически во всех осадочных образованиях. Экспериментально на современных цианобактериях было показано, что процессы фоссилизации (окаменения) могут происходить в считанные часы, в связи с чем мы и находим в ископаемом состоянии неразложившиеся бактерии удивительно хорошей сохранности. Последствия этих открытий ещё трудно оценить. Но уже сейчас ясно, что обнаружение, например, бентосных цианобактериальных матов (ЦБМ) в чёрных сланцах, многие из которых считались показателями глубоководности (куда лучи света практически не проникают), заставляет пересмотреть устоявшиеся палеогеографические построения — ЦБМ должны были образовываться в фотической зоне (в зоне проникновения света).

Повсеместное обнаружение бактерий в осадочных породах даёт основание думать, что многие аспекты теории осадкообразования должны быть пересмотрены, поскольку сегодня уже трудно представить себе процесс осаждения в эпиконтинентальных бассейнах прошлого без участия бактерий. Обнаружение же ЦБМ в докембрийских породах ведёт и к переоценке перспектив нефтегазоносности древних толщ, считавшихся обычно малоинтересными с точки зрения накопления органического вещества. Однако с учётом огромной продуктивности современных ЦБМ такой взгляд нуждается в пересмотре, поскольку нет оснований полагать, что продуктивность древних ЦБМ была ниже, чем современных. В теоретическом плане данные бактериальной палеонтологии тесно связаны с выяснением огромного значения прокариотической биосферы прошлого и ее трансформации в эукариотическую.

Молекулярная палеонтология

Очень серьёзные результаты в последние годы были получены в области изучения хемофоссилий или биомаркёров. Это направление чаще всего называют молекулярной палеонтологией. Она изучает молекулярные следы жизнедеятельности организмов прошлого, выясняя по ним характер эволюции как живых организмов, так и биосферы в целом. Остатки органических молекул, первичных или преобразованных, часто устойчивы к внешним воздействиям и сохраняются достаточно хорошо. Разнообразие органических соединений (естественно и разнообразие хемофоссилий) возрастает с эволюцией (усложнением) органического мира. Кроме того, некоторые органические соединения, сохраняющиеся в ископаемом состоянии, специфичны для тех или иных конкретных групп. Так, у бактерий для их систематики используется жирнокислотный состав липидов, у растений — фенольные соединения, алкалоиды и многое другое. Очень интересно, что 7- и 8-метилгептадеканы характерны только для цианобактерий (синезелёные водоросли) и не встречены у других бактерий, водорослей и высших растений. Особенно интересны результаты исследований докембрийских хемофоссилий, поскольку они позволяют наметить время возможного появления эукариот, затем многоклеточных и т. д.

В 1969 году основоположник молекулярной палеонтологии Кальвин, а позднее В. Шопф с коллегами предложили первые картины химической и биологической эволюции. Современные данные позволяют внести существенные коррективы. В основном они связаны с постепенным удревлением находок, свидетельствующих о появлении эукариот, многоклеточных организмов и т. д. (рис. 1).

В последние 10 лет появились работы по изучению ДНК у вымерших форм. Эти исследования открывают возможность выявлять сходство и различие организмов на основе комплекса молекулярных характеристик. Можно получить количественную оценку сходства сравниваемых форм, вычислить генетические расстояния между ними и даже оценить абсолютное геологическое время расхождения групп.

Первые остатки ДНК вымершего животного были выделены из шкуры квагги в 1984 году. Исследование показало, что это животное являлось подвидом современной зебры. Спустя три года с помощью появившейся к тому времени полимеразной цепной реакции (ПЦР), позволяющей на основе матричного синтеза размножать последовательности ДНК и тем самым доводить их количество до пригодного для биохимического анализа, были получены многочисленные копии участков генов из образца головного мозга первобытного человека, погибшего, по-видимому, около 7 тыс. лет тому назад.

Изучены последовательности ДНК, выделенной из костей и мягких тканей четырёх видов новозеландских моа, вымерших около тысячи лет назад. Оказалось, что эти птицы гораздо древнее современных нелетающих киви. Вероятно, киви попали на острова значительно позже, чем вымершие моа, жившие там уже 80 млн лет тому назад. В то же время показано близкое родство киви с австралийскими эму.

ДНК была успешно выделена из ископаемых остатков мамонтов, датируемых от 10 до 50 тыс. лет. Выявлено, что виды мамонтов отличались рядом генетических маркёров. Генетические дистанции мамонта от каждого из родов современных слонов примерно одинаковы, хотя морфологические исследования показывают более близкое родство мамонтов с индийскими слонами, нежели с африканскими. Возможно, это указывает на несоответствие темпов эволюции на молекулярном и морфологическом уровнях. Молекулярная палеонтология, или палеогенетика, ещё очень молода, и её основные открытия можно ожидать в будущем. Как видит читатель, исследования ДНК ископаемых остатков организмов ограничены пока материалом очень молодого возраста (тысячи, реже десятки тысяч лет).

Биосферное направление

Целенаправленные исследования в области эволюции древних экосистем и биосферы в целом являются в значительной мере типично российским явлением, исторически связанным с традицией, берущей начало от известных работ В.И. Вернадского. Сегодня это направление находится и в русле громадного интереса человечества к современному экологическому кризису, противостояние которому немыслимо без учёта предыстории развития биосферы.

Каковы же основные результаты, полученные в этом разделе палеонтологии? Прежде всего на палеогеологическом материале показано, что биосфера — непрерывно развивающаяся авторегулируемая система. Для её развития характерна цикличность разного масштаба. Было выяснено, что только изменение разнообразия является объективным критерием состояния биосферы. На основе изучения динамики разнообразия выявляются разной силы кризисы в истории биосферы, а детальное изучение их протекания показывает, что они развиваются по сходному сценарию, то есть все этапы кризиса (начало, главная фаза и фаза выхода из кризиса) характеризуются своими специфическими признаками (симптомами), но всегда одними и теми же. Это позволяет при выявлении естественных трендов в эволюции биосферы более чётко оценить возможные последствия антропогенных воздействий.

В предыдущие два десятилетия Д. Сепкоски (США) был создан банк данных по морским организмам, позволивший проанализировать динамику их разнообразия в фанерозое (от кембрия (540 млн лет) доныне). Созданный за последние годы в нашей стране банк данных по наземным организмам дал возможность сравнить динамику морского и континентального разнообразия и показать удивительную синхронность крупных изменений, что наводит на мысль о существовании глобальных причин, влияющих на биосферу в целом. Биосферные исследования потребовали разработки нестандартных подходов и в палеобиогеографии.

Автор: Алексей Юрьевич Розанов — доктор геолого-минералогических наук, профессор кафедры палеонтологии МГУ, член-корреспондент РАН, директор Палеонтологического института РАН. Область научных интересов — палеонтология, палеогеография и стратиграфия верхнего докембрия и кембрия, эволюция биосферы, бактериальная палеонтология, астробиология. Автор более 280 работ, включая 21 монографию.

Источник: Соросовский образовательный журнал

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *


три + = 9

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>